Thermodynamics of Ag⁰-Solvation in Molten Silver Halides, Doped with Metal Halides

Thomas Lieser and Konrad G. Weil Institut für Physikalische Chemie, Technische Hochschule Darmstadt

Z. Naturforsch. 40 a, 131-136 (1985); received December 2, 1984

Dedicated to Professor Dr. Alarich Weiss on the Occasion of his 60th Birthday

From the temperature dependence of the solubility of silver in its molten halides, the thermodynamic functions $\Delta H_{\rm solv}$ and $\Delta S_{\rm solv}$ are calculated. They depend strongly on the presence and concentration of mono- and divalent cations. A possible structure breaking effect of these ions is discussed.

1. Introduction

In a recent paper we reported on the dependence of the thermodynamic functions $\Delta H_{\rm solv}$ and $\Delta S_{\rm solv}$ of Ag^0 in molten $AgCl_{1-x}Br_x$ on the AgBr mole fraction x [1]. These functions vary non-monotonously with x. From UV-VIS spectra of the solution it could be tentatively concluded that Ag^0 is associated to complexes present in the melt via charge transfer interaction [2]. Therefore, the thermodynamic functions of solvation may be indicative for the activity of such complexes in the melt. The aim of the present paper is to show whether the thermodynamics of solvation of Ag^0 in its molten halides depends on the presence of ionic dopants. This would indicate that the structure of the melt can be influenced by these additives.

2. Experimental

In order to obtain the thermodynamic solvation functions of Ag⁰ in molten silver halides, the thermodynamics of dissolution of metallic silver in these melts was derived from the temperature dependence of the solubility of the metal. The experimental procedure is described in detail in [1]. In order to obtain reliable values for the statistical errors, the van't-Hoff-equation

$$\ln y_{\rm Ag} = -\frac{\Delta H_{\rm s}}{RT} + \frac{\Delta S_{\rm s}}{R} \tag{1}$$

Reprint requests to Prof. Konrad G. Weil, Institut für Physikalische Chemie, Technische Hochschule Darmstadt, Petersenstraße 20, 6100 Darmstadt.

 $(y_{Ag}:$ saturation mole fraction of silver in the melt, ΔH_s and $\Delta S_s:$ enthalpy and entropy of dissolution) was solved by linear regression. The resulting standard deviations are given in the tables and, as error bars, in the figures of the present paper. The error limits given in [1] were only estimated. Therefore, some data were redetermined. Figure 1 shows as an example experimental points from [1] together with some additional points and the resulting regression line

The functions $\Delta H_{\rm solv}$ and $\Delta S_{\rm solv}$, which are associated with the process

Ag (in the ideal gas state p = 1 atm) \rightarrow

Ag (solvated in the melt at standard concentration)

can be calculated with help of the sublimation functions:

$$\Delta H_{\text{solv}} = \Delta H_{\text{s}} - \Delta H_{\text{subl}}$$
, $\Delta S_{\text{solv}} = \Delta S_{\text{s}} - \Delta S_{\text{subl}}$.

These were taken from [3].

After purification of the melts, as described in [1], the desired concentration of the dopant was achieved by adding weighed amounts of the respective salts (p.a. from E. Merck, Darmstadt) to the melt. The following salts were used:

LiCl, KCl, CsCl, $ZnCl_2$, $CdCl_2$, $CaCl_2$, and $BaCl_2$.

3. Results

3.1. Undoped melts $AgCl_{1-x}Br_x$

All results concerning this system are collected in Table 1. Due to the limited temperature range in

0340-4811 / 85 / 0200-0131 \$ 01.30/0. – Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

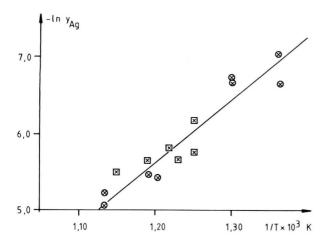


Fig. 1. Arrhenius plot, y_{Ag} : saturation mole fraction of silver in AgCl_{0.28}Br_{0.72}; circles: this work, squares: from [5].

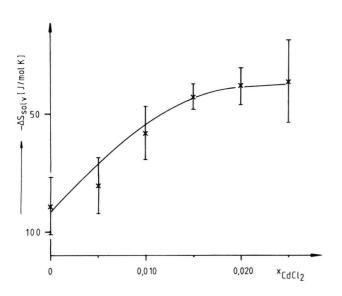


Fig. 3. Solvation entropy of silver in silver chloride as a function of the mole fraction x_{CACL} of added dopant.

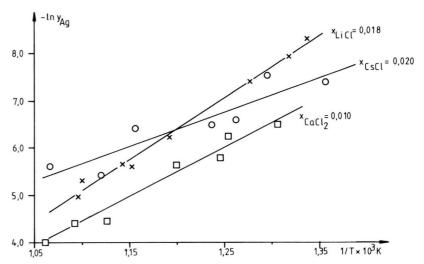


Fig. 2. Arrhenius plots, y_{Ag} : saturation mole fraction of silver in silver chloride, doped as indicated at the curves.

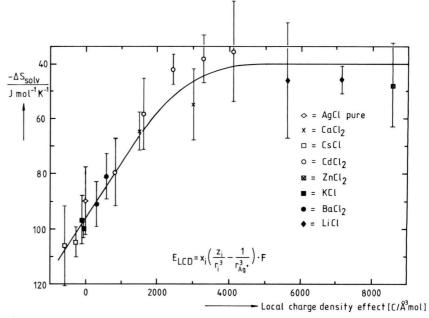


Fig. 4. Solvation entropy of silver in doped silver chloride as a function of the local charge density effect E_{LCD} .

Table 1. Thermodynamic functions of dissolution and solvation of silver in $AgCl_{1-x}Br_x$ melts.

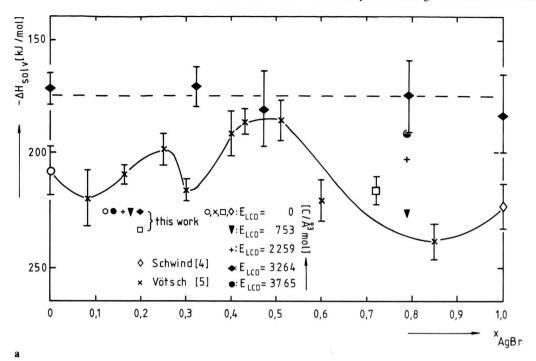

$AgCl_{1-x}Br_x$	$\Delta H_{ m s}$	$\Delta S_{\rm s}$	Standard Deviation in ΔH	Standard Deviation	$-\Delta H_{\rm solv}$	$-\Delta S_{\rm solv}$
X	(kJ/mol)	(J/mol K)	(kJ/mol)	in ΔS (J/mol K)	(kJ/mol)	(J/mol k)
1.00	59	32	± 9	± 12	222	93
0.85	43	6	± 8	± 10	238	119
0.72	65	31	± 6	± 8	216	94
0.60	61	25	± 9	± 11	220	100
0.51	96	68	± 8	± 10	185	57
0.43	95	65	± 6	± 7	186	60
0.40	90	60	± 9	± 11	191	65
0.30	65	29	± 5	± 6	216	96
0.25	83	50	± 6	± 8	198	75
0.16	72	35	± 5	± 5	209	90
0.08	61	24	± 13	\pm 15	220	101
0.00	73	36	± 10	± 12	208	89

Table 2. Thermodynamic functions of dissolution and of solvation of silver in AgCl-melts doped with different cations.

Dopant	x_{Dopant}	$\Delta H_{\rm s}$	ΔS_{s}	Standard Deviation in ΔH	Standard Deviation in ΔS	$-\Delta H_{\rm solv}$	$-\Delta S_{\rm solv}$
		(kJ/mol)	(J/mol K)	(kJ/mol)	(J/mol K)	(kJ/mol)	(J/mol K)
ZnCl ₂	0.020	98	76	±13	± 16	183	49
LiCl	$0.014 \\ 0.018$	107 110	76 78	± 18 ± 4	± 21 ± 5	174 171	49 47
CdCl ₂	0.005 0.010 0.015 0.020 0.025	75 94 106 109 106	45 66 83 87 89	$\begin{array}{l} \pm 10 \\ \pm 11 \\ \pm 4 \\ \pm 7 \\ \pm 15 \end{array}$	$\begin{array}{c} \pm 12 \\ \pm 13 \\ \pm 5 \\ \pm 9 \\ \pm 18 \end{array}$	206 187 175 172 175	80 59 42 38 36
CaCl ₂	$0.010 \\ 0.020$	88 93	60 70	± 6 ± 11	± 7 ± 13	193 188	65 55
BaCl ₂	0.010 0.020	68 81	30 44	± 7 ± 7	± 8 ± 8	213 200	95 81
KCl	0.010 0.020	65 67	25 29	± 3 ± 7	± 4 ± 9	216 214	100 96
CsCl	0.010 0.020	58 61	20 19	± 5 ± 12	± 6 ± 14	223 220	105 106

Table 3. Thermodynamic functions of dissolution and of solvation of silver in $AgCl_{1-x}Br_x$ -melts doped with different cations.

Dopant	x_{Dopant}	$ \frac{x_{AgBr}}{in} $ $ AgCl_{1-x}Br_x $	$\Delta H_{\rm s}$	$\Delta S_{\rm s}$	Standard Deviation	Standard Deviation in ΔS (J/mol K)	$-\Delta H_{\rm solv}$	$-\Delta S_{\rm solv}$
			(kJ/mol)	(J/mol K)	in ΔH (kJ/mol)		(kJ/mol)	(J/mol K)
CdCl ₂	0.020 0.020 0.020 0.020 0.020	1.00 0.79 0.47 0.32 0.00	98 106 100 110	80 86 77 89 87	± 18 ± 16. ± 17 ± 9 ± 7	± 22 ± 20 ± 22 ± 11 ± 9	183 175 181 171 172	45 39 48 36 38
CaCl ₂	0.005 0.015 0.024	0.79 0.79 0.79	55 78 89	25 57 73	± 5 ± 8 ± 8	$\begin{array}{ccc} \pm & 6 \\ \pm & 11 \\ \pm & 10 \end{array}$	226 203 192	100 68 52

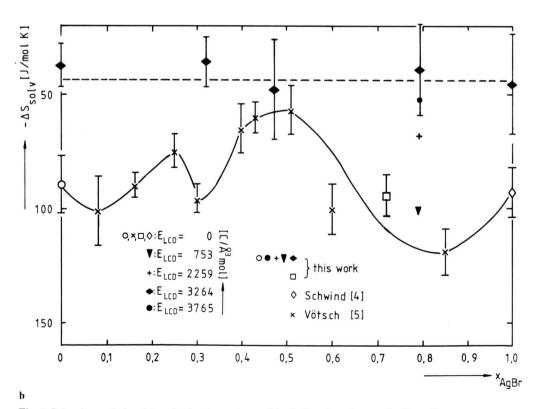


Fig. 5. Solvation enthalpy (a) and solvation entropy (b) of silver in mixtures $AgCl_{1-x}Br_x$.

which the experiments can be performed, the standard deviations of the thermodynamic functions are relatively high. Nevertheless, the non-monotonous dependence of these functions on x can clearly be seen (cf. also Fig. 5).

3.2. Doped melts

The addition of small amounts (mole fraction ≤ 0.02) of different halides to molten silver chloride changes the solubility of silver and its temperature dependence markedly. Furthermore, as can be seen from Fig. 2, the influence is different for different cations.

The concentration dependence of the resulting solvation thermodynamics was studied with $CdCl_2$. Figure 3 shows that the entropy of solvation increases with increasing concentration of dopant. Saturation of this observation seems to occur at a mole fraction of dopant of about 0.02. The thermodynamic functions of solvation of silver in doped silver chloride melts, as far as they were determined in our experiments, are collected in Table 2. Some additional data were measured using mixed melts $AgCl_{1-x}Br_x$ as solvents. These results are presented in Table 3.

4. Discussion

The solvation entropy of Ag^0 in pure silver chloride is $-89 \, \mathrm{J} \, \mathrm{mol}^{-1} \, \mathrm{K}^{-1}$. Addition of $\mathrm{CdCl_2}$ leads to $\Delta S_{\mathrm{solv}} = -38 \, \mathrm{J} \, \mathrm{mol}^{-1} \, \mathrm{K}^{-1}$ at $x_{\mathrm{CdCl_2}} = 0.02$. Other dopants have similar but smaller effects. Only the addition of KCl and LiCl makes the solvation entropy more negative than it is in the undoped melt. The solvation enthalpy is changed similarly. That means that the localization of the silver atoms under the influence of the dopants is smaller than in undoped melts. Salts which change the solvation properties of water in the same sense are called structure breakers [6].

From the high electrolytic conductivity of molten silver halides [8] it has to be concluded that on the time scale of this experiment the melt behaves like an ionic liquid. Neutron diffraction data [7], on the other hand, do not exclude the presence of structural entities like molecules or clusters, at least on the extremely fast time scale of the neutron diffraction experiment. The spectroscopic properties of Ag⁰ in molten silver chloride [2] as well as the large

negative entropy of solvation indicate strong localization of Ag⁰ on these structural entities. If dopants convert the character of the melt from "partly covalent" to "more ionic", this structure breaking mechanism could explain the observed change of the solvation functions.

We tried to rationalize the specific effect of different ions as well as the concentration dependence. This was possible by introducing a local charge density effect $E_{\rm LCD}$, defined as

$$E_{LCD} = x_i \left(\frac{z_i}{r_i^3} - \frac{1}{r_{Ag^+}^3} \right) F$$

with x_i : mole fraction of dopant i, z_i : its valency, and r_i : its ionic radius. F is Faraday's constant. Figure 4 clearly demonstrates that there is a unique relationship between this parameter and the change of the solvation entropy. Unfortunately we are not able to present any interpretation for this surprising result.

Nevertheless, the local charge density effect seems to be a quantitative measure for the amount of structure breaking or formation in a doped melt. This can also be seen from the properties of doped melts $AgCl_{1-x}Br_x$. In Fig. 5a, b we present the results concerning the solvation enthalpy and entropy of silver in these melts as a function of x, which are also presented in Table 3. The figure contains the recalculated standard deviations. The latter are relatively high, but the peculiar non-monotonous shape of the curve which was already published in [1] can be recognized without doubt. In [1] we attributed this property of the x-dependence of ΔH_{solv} and ΔS_{solv} to the occurrence of complexes in the melt. These complexes were assumed to contain both anions Cl⁻ and Br⁻. Also presented in Fig. 5 a, b are some points which were obtained with doped melts. These contained different amounts of CdCl₂ and CaCl₂, as specified in Table 3. The corresponding values of E_{LCD} are given in the figure. With increasing E_{LCD} , the minimum around x = 0.8 disappears gradually. When $E_{\rm LCD}$ exceeds 3000 C $Å^{-3} \text{ mol}^{-1}$, a dependence of ΔH_{solv} and ΔS_{solv} from x can no longer be detected.

Acknowledgements

Financial support by the Fonds der Chemischen Industrie is greatly acknowledged. Degussa, Hanau, kindly supported us with silver halides.

- E. Schuster, A. F. Schwind, R. Vötsch, and K. G. Weil, Z. Naturforsch. 34a, 1203 (1979).
 A. F. Schwind, R. Vötsch, and K. G. Weil, Z. Natur-
- forsch. 36 a, 354 (1981).
- [3] I. Barin, O. Knacke, and O. Kubaschewski, in "Thermochemical Properties of Inorganic Substances, Suppl.", Springer-Verlag, Berlin 1977.
 [4] A. F. Schwind, Dissertation Darmstadt.

- [5] R. Vötsch, Dissertation Darmstadt.[6] H. G. Hertz, Ber. Bunsenges. Phys. Chem. 67, 311
- [6] H. G. Hertz, Ber. Bunsenges. Phys. Chem. 67, 311 (1963).
 [7] J. Y. Derrien and J. Dupuy, Phys. Chem. Liq. 5, 71 (1976).
 [8] G. G. W. Greening and K. G. Weil, Z. Naturforsch. 39 a, 764 (1984).